CLASS XII SAMPLE PAPER MATHS

TIME: 3 HRS

MAX. MARKS: 100

GENRAL INSTRUCTIONS:

1 All questions are compulsory
2 Section-A, each question carries 1 mark. ($10 \times 1=10$)
3 Section-B, each question carries 4 marks. (12×04=48)
4 Section-C, each question carries 6 marks. $(7 \times 06=42)$

SECTION A

1. If $f(x)=|x|$ and $g(x)=|5 x-2|$, then find fog.
2. simplify $\sin ^{-1}(\sin 10)$.
3. If A is a square matrix of order 3×3 and $|A|=4$ find $|\operatorname{adj} A|$.
4. If $A=\left[\begin{array}{ll}2 & 3 \\ x & 6\end{array}\right]$ is a singular matrix. Find the value of x.
5. Evaluate $\int e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x$.
6. If $a * b=a b-3$ then find $3 * 4$.
7. Find a vector in the direction of vector $\mathrm{i}-2 \mathrm{j}$ that has magnitude 7 units.
8. find the shortest distance between two lines $\frac{x}{1}=\frac{y}{0}=\frac{z}{0}$ and $\frac{x}{0}=\frac{y}{1}=\frac{z}{0}$.
9. Write the degree and order of the differential equation

$$
y=x \frac{d y}{d x}+2\left(1+\frac{d^{2} y}{d x^{2}}\right)^{\frac{1}{2}} .
$$

10. If a line makes angles
$90^{0}, 60^{\circ}$ and 30^{0} with the positive direction of x, yand z axis, find Its Direction Cosine.

SECTION B

11. Let $\mathrm{A}=\mathrm{NXN}$ and ' *' be a binary operation on A defined by $(a, b) *(c, d)=(a+c . b+$ d) show that * is commutative and associative . find identity element for * on A, if any.
12. Prove that $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^{2}$.

Or
Prove that

$$
\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)
$$

13. Let T be the set of all triangles in a plane with R a relation in T given by $R=\left\{\left(T_{1}, T_{2}\right)\right.$: T_{1} is congruent to $\left.T_{2}\right\}$. Show that R is an equivalence relation.
14. For what value of \mathbf{a} and \mathbf{b}, the function f defined as:

$$
f(x)= \begin{cases}3 a x+b, & \text { if } x<1 \\ 11, & \text { if } x=1 \text { is continuous at } x=1 . \\ 5 a x-2 b, & \text { if } x>1\end{cases}
$$

15. Find $\frac{d y}{d x}$ if $x=a\left(\cos t+\log \tan \frac{t}{2}\right), y=\operatorname{asin} t$.

Or

If $y=x^{\cos x}+\sin x^{\cos x}$ find $\frac{d y}{d x}$.
16. Evaluate $\int \frac{2 x+3}{2 x^{2}-3 x-2} d x$.

Or
Evaluate $\int_{0}^{\frac{\pi}{2}} \log \sin x d x$
17. find the intervals in which the following function is strictly increasing or strictly decreasing

$$
\mathrm{F}(\mathrm{x})=20-9 \mathrm{x}+6 x^{2}-x^{3} .
$$

Or.

For the curve $y=4 x^{2}-2 x^{5}$,find all the points which the tangent passes through the origin.
18. Form the differential equation of the family of circles having radii 3units.
19. Solve

$$
(x+y+1) \frac{d y}{d x}=1
$$

20. Find a unit vector perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=3 \hat{\imath}+$ $2 \hat{\jmath}+2 \hat{k}$ and $\vec{b}=\hat{\imath}+2 \hat{\jmath}-2 \hat{k}$.
21. find the equation of line of the shortest distance between two lines $\frac{x-8}{3}=\frac{y+9}{-16}=$ $\frac{z-10}{9}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{5-z}{5}$.
22. Three balls are drawn one by one without replacement from a bag containing five white balls and four green balls. Find the probability distribution of no. of green balls drawn.

SECTION-C

23. If $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right]$, Find $A^{-1} \&$ hence solve the following system of equations.

$$
\begin{aligned}
& 2 x+y+3 z=3 \\
& 4 x-y=3,-7 x+2 y+z=2
\end{aligned}
$$

Or

Using elementary transformations, find the inverse of the matrix.

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}\right]
$$

24. If the length of three sides of a trapezium other than the base are equal to 10 cm each then find the area of trapezium when it is maximum.
25. Find the area bounded by the curves $x^{2}+y^{2}=4 \&(x-2)^{2}+y^{2}=1$ by using integration.
26. Evaluate $\int_{1}^{2}\left(x^{2}+x+2\right) d x$ as a limit of sums.

Or

Evaluate $\int_{-1}^{\frac{3}{2}}|x \sin (\pi x)| d x$.
27. Find the co-ordinates of the foot of the perpendicular and the perpendicular distance of the point $(1,3,4)$ from the plane $2 x-y+z+3=0$. Also find the image of the point in the plane.
28. Two tailors A \& B earns Rs. 150 \& Rs. 200 per day respectively. ' A ' can stitch 6 shirts and 4 pants per day, while B can stitch 10 shirts \& 4 pants per day. How many days shall each of them work, if it is desired to produce at least 60 shirts \& 32 pants at a minimum labor Cost? Solve the problem graphically.

chat	

29. In a factory which manufactures bolts machines $A, B \& C$ manufacture respectively $25 \%, 35 \% \& 40 \%$ of the bolts. Of their outputs $5 \%, 4 \% \& 2 \%$ are respectively defective bolts. A bolt is drawn at random from the product and it is found to be defective. A) What is the probability that it is manufactured by the machine B ? B) Find the probability that it is manufactured by either A or C.
